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Mesenchymal stem cells (MSCs) are one of a few stem cell types to be applied in clinical practice as thera-
peutic agents for immunomodulation and ischemic tissue repair. In addition to their multipotent differentiation 
potential, a strong paracrine capacity has been proposed as the principal mechanism that contributes to tissue 
repair. Apart from cytokine/chemokine secretion, MSCs also display a strong capacity for mitochondrial trans-
fer and microvesicle (exosomes) secretion in response to injury with subsequent promotion of tissue regenera-
tion. These unique properties of MSCs make them an invaluable cell type to repair damaged tissues/organs. 
Although MSCs offer great promise in the treatment of degenerative diseases and inflammatory disorders, 
there are still many challenges to overcome prior to their widespread clinical application. Particularly, their 
in-depth paracrine mechanisms remain a matter for debate and exploration. This review will highlight the dis-
covery of the paracrine mechanism of MSCs, regulation of the paracrine biology of MSCs, important paracrine 
factors of MSCs in modulation of tissue repair, exosome and mitochondrial transfer for tissue repair, and the 
future perspective for MSC-based therapy.
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effective cell source in cell-based treatment. The fascinat-
ing therapeutic effects of MSCs in various life-threatening 
human diseases, including cerebral spinal cord injury, 
hematological disorders, cardiovascular diseases, diabe-
tes, immune diseases, graft versus host diseases (GvHDs), 
and cancer, are well documented. Nonetheless, the in-
depth mechanisms of how MSCs act remain a matter for 
debate and exploration. The generally putative concepts 
cover transdifferentiation, cell fusion, paracrine effects, 
microvesicles carrying messenger RNA (mRNA) or 
microRNA (miRNA) and mitochondrial transfer (Fig. 1)  
(8,9,16,31,34,35,43,97,101,136). This review will focus 
on the paracrine effects of MSCs, the most comprehen-
sive and enduring mode of action that ascribes to func-
tional recovery in both acute and chronic responses.

INTRODUCTION

The initiation of stem cell research can be traced back 
to 1963 when Becker, McCulloch, and Till first identified 
stem cells in mouse bone marrow (12). A subsequent grow-
ing body of evidence that confirms the existence and func-
tion of stem cells now makes them the optimal source for 
tissue engineering and regenerative medicine. According 
to statistical data registered on www.ClinicalTrials.gov 
to date, stem cell-based therapeutic approaches now total 
4,230 globally; the transition from laboratory bench to 
bedside has begun. Based on the technical feasibility, 
promising curative effects, reduced economic cost, and 
circumvention of ethical issues, mesenchymal stem cells 
(MSCs), which account for up to 300 cases of the 4,230 
(7.0%, 300/4,230), have become the most common and 
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DISCOVERY OF PARACRINE 
MECHANISM OF MSCs

The secretion of cytoprotective factors by MSCs was 
first reported by Gnecchi and colleagues (34,35,57). The 
novel observation that modified MSCs overexpressing 
v-akt murine thymoma viral oncogene homolog 1/protein 
kinase B (Akt-MSCs) could prevent ventricular remod-
eling and reestablish heart function in less than 72  h 
following surgical myocardial infarction (MI) and cell 
transplantation raised the possibility of an action other 
than a myogenic pathway that would not be evident in 
such an extremely brief time period. Previous studies also 
pointed out that the limited frequency of the transplanted 
stem cell-derived cardiomyocytes (CMCs) was unlikely 
to be the main contributor to the marvelous amelioration 
of the ischemic organs (5,48,59,82). Thus, a new mecha-
nism was proposed in which the injected MSCs might 
release trophic factors that contribute to myocardial pro-
tection following an ischemic insult. This hypothesis was 
then confirmed by evident improvement in cardiac perfor-
mance following injection of conditioned medium (CM) 
collected from hypoxic Akt–MSCs (Akt–MSCs–CM) 
into an induced MI model. In vitro experiments also dem-
onstrated that the hypoxic Akt–MSCs–CM could protect 
ventricular CMCs against apoptosis when subjected to 
a hypoxic challenge. Other valuable factors were also 
identified, including vascular endothelial growth factor 
(VEGF), basic fibroblast growth factor (bFGF), hepato-
cyte growth factor (HGF), and thymosin b 4 (TB4), that 
were upregulated in the Akt–MSCs compared with the 
vector–MSCs. The paracrine effects of MSCs not only 
emerged as an original mechanism of action, but also 
inspired the future biological and clinical application 
of purified cytokines in ischemic injury. Kinnaird et al. 
(55) reported that growth of endothelial cells (ECs) and 
smooth muscle cells (SMCs) could be stimulated by the 
conditioned medium of MSCs (MSCs–CM) in a dose-
dependent manner. This phenomenon could be partly 
explained by the high level of VEGF and bFGF detected 
in the MSCs–CM. Nonetheless, neutralization using 

anti-VEGF and anti-bFGF antibodies could only partly 
impair this effect, suggesting other potential beneficial 
chemokines or cytokines needed to be determined (55). 
Subsequent studies located more salutary factors essen-
tial for remission of injury, which could be classified into 
five categories as follows.

Immunomodulation Factors

Bartholomew et al. first observed the immunomodu-
latory function of MSCs as evidenced by their dose-
dependent inhibitory effect on the cell proliferative 
response of allogeneic mitogen-stimulated lymphocytes in 
mixed lymphocyte culture (MLC) (11). The skin transplan-
tation model also verified prolonged skin graft survival 
following intravenous (IV) administration of MSCs com-
pared with a saline injection group. Contrary to this, Di 
Nicola’s data demonstrated that this immunosuppressive 
feature was in part due to soluble factors as shown by 
the continued suppressive effect on the proliferation of 
T-lymphocytes in a Transwell system and excluded the 
possibility of cell–cell communication (21). The prolif-
eration of T-cells could be sectionally restored with the 
addition of monoclonal antibody transforming growth 
factor-b1 (TGF-b1) or HGF, suggesting both cytokines 
were involved in the process. Inducible indoleamine 
2,3-dioxygenase (IDO), an enzyme that catalyzes con-
version from tryptophan to kynurenine and subdues the 
T-cell response to autoantigens and fetal alloantigens, 
was detected in MSCs stimulated by interferon-g (IFN-g) 
(77). With respect to IFN-g-primed MSCs, another article 
proposed that IFN-g played a crucial rule in the MSC–T 
lymphocyte interplay by upregulating the expression  of 
B7 homolog 1 [B7-H1; also known as programmed death 
ligand 1 (PD-L1) or cluster of differentiation 274 (CD274)] 
on MSCs, a known coinhibitor molecule of the immune 
response (109). Selmani et al. discovered that human leuko-
cyte antigen class I molecule G5 (HLA-G5) secreted by 
MSCs, possessing the ability to contact with allo-stimulated 
T-cells, was responsible for the immunosuppressive func-
tions of MSCs on T-lymphocyte and NK (natural killer) 

FACING PAGE
Figure 1.  Action modes of MSCs. Transdifferentiation: Mesenchymal stem cells (MSCs) possess the ability to differentiate into another 
cell type, including ectoderm, mesoderm, and endoderm. Cell fusion: The MSC fuses with another cell to form a multinuclear cell known 
as syncytium. Mitochondrial transfer: The MSC makes contact with the adjacent cell, and a gap junctional channel (GJC) is built. The 
MSC transfers its mitochondria to the impaired cell through this GJC. Microvesicles: The MSC releases microvesicles containing RNA, 
microRNA (miRNA), and/or protein to the microenvironment. The cell nearby engulfs these microvesicles through the endocytosis 
process. Paracrine: The MSC secretes bioactive cytokines and chemokines that act on immunomodulation, angiogenesis/arteriogenesis, 
antiapoptosis, antioxidation, and cell migration/stimulation. Abbreviations: IL-6, interleukin-6; HGF, hepatocyte growth factor; IDO, 
indoleamine 2,3-dioxygenase; HO-1, heme oxygenase 1; TGF, transforming growth factor; NO, nitric oxide; HLA-G5, human leukocyte 
antigen class I molecule G5; PGE2, prostaglandin E2; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; IGF, 
insulin-like growth factor; MCP1, monocyte chemotactic protein 1; SDF1, stromal cell-derived factor 1; PIGF, placental growth factor; 
IL-6, interleukin 6; Bcl-2, B-cell lymphoma 2; Akt, v-akt murine thymoma viral oncogene homolog 1; STC1, stanniocalcin 1; GM-CSF, 
granulocyte-macrophage colony-stimulating factor; TNF, tumor necrosis factor; GDNF, glial-derived neurotrophic factor; SCF, stem cell 
factor; LIF, leukemia inhibitory factor; CCL, chemokine C-C motif ligand; CXCL, chemokine C-X-C motif ligand.
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cells, as well as the expansion of the inducible CD4-
positive CD25 high-expressing forkhead box P3-positive 
(CD4+CD25highFOXP3+) regulatory T-cells (107). Apart 
from the influence on lymphocytes, the bioactive com-
ponents of MSCs were shown to facilitate the transition 
of macrophages from the proinflammation phenotype M1 
(classical-activated macrophage) to the anti-inflammation 
phenotype M2 (alternative-activated macrophage). This 
was proposed as one of the mechanisms that occur in the 
early stage of tissue deterioration (2,18). There are three  
major stages of the immune response: 1) antigen recogni-
tion and presentation; 2) T-cell activation, proliferation, 
and differentiation; 3) effective stage. The immunosup-
pressive privilege of MSCs not only exists during the 
second stage on T-cells but also modulates the very first 
step by interacting with antigen-presenting cells (APCs). 
Jiang et al. presented evidence that MSCs inhibited the 
differentiation, maturation, and function of dendritic 
cells (DCs) derived from CD14+ monocytes (46). The 
mature DCs that underwent MSC coculture showed 
reduced expression of CD83 and CD1a, both of which 
are markers of DC maturity. The costimulative molecules 
such as CD80 and CD86, as well as secreted IFN-g, and 
interleukin 12 (IL-12) were also downregulated by MSC 
treatment, thus rendering T-cells anergic downward. To 
distinguish cell–cell contact from cytokine secretion, they 
set up a Transwell system with different MSC/monocyte 
ratios. The MSCs plated in the lower compartment were 
able to fully prevent monocytes from differentiation and 
maturation at a high MSC/monocyte ratio (1:10). It can 
thus be concluded that MSCs play the part of regulator 
throughout the immune response, including different 
phases, various cell types, and diverse modes of action.

Most recently, MSCs were found to act as immune 
modulators, rather like a double-edged sword. Li et al. 
proposed that the degree of nitric oxide (NO) production 
elicited by proinflammatory cytokines in the surrounding 
environment could influence MSCs to be either potently 
immunosuppressive or highly immune enhancing (66). 
While inducible nitric oxide synthase (iNOS) production 
was blocked, the immunosuppressive properties of MSCs 
diminished and reverted to promote T-cell proliferation, 
as well as the delayed-type hypersensitivity response by 
their chemotactic effect on immunocytes. This immu-
noenhancing effect of MSCs might be attributed to 
chemokines such as chemokine C-X-C motif receptor 3 
(CXCR3) and chemokine C-C motif receptor 5 (CCR5)  
derived from themselves. To some extent, this gained sup-
port from the evidence that iNOS−/− MSCs failed to pro-
mote proliferation of CXCR3−/−CCR5−/− splenocytes. These 
results highlight the importance of evaluating inflamma-
tion status and intervention with regard to iNOS/IDO 
levels before MSCs can be broadly applied for immuno-
logical disease in both rodent models and human clinical 

trials. Other than suboptimal timing and dose of adminis-
tered MSCs, it might partially explain the reasons why the 
manipulation of MSCs in GvHD showed mixed results, 
with some indicating an immunosuppressive potential 
and others not (22,113).

Angiogenic and Arteriogenic Factors

It has been proven that angiogenic and arteriogenic 
support accounts for amelioration of coronary artery dis-
ease (CAD) following bone marrow cell transplanta-
tion (89,90). Angiogenesis is evidenced by formation 
of a new blood network from the preexisting capillar-
ies by sprouting and proliferation, while arteriogenesis 
is demonstrated by the collateral enlargement and mus-
cularization of small arterioles to form larger arteries 
(28). Angiogenesis is tightly regulated by a competi-
tive balance of the angiopoietins and inhibitors, known 
as “angiogenic switch” (88). Only when the increasing 
cytokines and cell adhesion receptors that impel neovas-
cularization reach a certain level and concentration in the 
locoregional environment can they incrementally initial-
ize the process of angiogenesis. It has been reported that 
the hypoxia-inducible factor 1 (HIF-1) signaling pathway 
can switch on this angiogenesis process in ischemic dis-
ease (123). HIF-1 is a nucleoprotein with transcription 
properties that regulates the expression of a variety of tar-
get genes with the ability to acclimatize and promote cell 
survival in an oxygen-deficient environment, including 
glycolytic enzymes that provide adenosine triphosphate 
(ATP) for cell metabolism, and proangiogenetic factors 
such as VEGF, FGF, NO, and insulin-like growth factor 
(IGF) (29,44,76,100). It is only under hypoxic conditions 
that HIF-1 can be stabilized and activate expression of 
the downstream proteins. The transcriptional activation 
mediated by HIF-1 results in an escalating concentra-
tion of the biological cytokines that trigger the vascular 
endothelial cells to proliferate, sprout, migrate, and infil-
trate to develop new vasoganglion. Accompanied by peri-
cytes, as well as optimal differentiation and apoptosis of 
the endothelial cells, the newborn vessels begin to form 
lumens. It is this physiological mechanism that led to the 
initiative to utilize MSCs for the treatment of ischemia: 
they express and produce VEGF, HGF, monocyte chemo
tactic protein 1 (MCP1; chemokine C-C motif ligand 2), 
and stromal cell-derived factor 1 (SDF1) that are critical 
for vascular network remodeling (54,55). Several stud-
ies attempting to explore the potential of MSCs for vas-
cular regeneration have consistently reported increasing 
capillary density and better collateral perfusion follow-
ing MSC manipulation, although whether the secretion 
of cytokines represents the paramount mechanism of 
action remains under dispute (41,50,62,79,83,108,110). 
In particular, a recent study by Dong et al. concerning the  
SDF1/CXCR4 axis revealed that CXCR4 expression in 
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CMCs was a necessity for the trophic effects generated 
by MSCs following left anterior descending artery (LAD) 
ligation (23). The researchers injected MSCs into wild-
type mice or conditional CMC–CXCR4 knockout mice 
post-MI induction. They observed an increased number 
of CMCs undergoing apoptosis and decreased cardiac 
progenitor cell (CPC) recruitment in the absence of 
CMC–CXCR4 expression, leading to depletion of MSC-
mediated functional restoration. This was despite equiva-
lent levels of implanted MSC infusion and increases in 
capillary density. It is reasonable to conclude from these 
results that the protective and restorative benefits medi-
ated by MSCs are partially due to angiogenesis factors 
that lead to increasing vascular density and recovery 
of blood supply in the ischemic area. Nonetheless, the 
importance of coordination of the hibernating or suscep-
tible cells in the vicinity cannot be underestimated.

Antiapoptotic Factors

To prevent programmed cell death, MSCs not only 
restore the microhemodynamics but also synthesize and 
secrete proteins that are classic inhibitors of apoptosis, 
such as B-cell lymphoma 2 (Bcl-2), survivin, and Akt 
(86,125). The ratio of Bcl-2 to Bcl-2-associated X protein 
(Bax) determines the sensitivity of the cells to a patho-
logical stimulus (87). The predominantly expressed Bcl-2 
will prevent the release of caspase activators; thus, cells 
are less likely to respond to the apoptotic signaling and 
vice versa (36). Tang et al. detected downregulated Bax 
expression in the ischemic myocardium following autolo-
gous MSC transplantation (117). Pan et al. showed lower 
expression of Bax, TNF receptor superfamily, member 6 
(FAS), and caspase 3 (CASP3) at both a transcriptional 
and translational level in MSC–CM-treated LO2s (a 
human normal liver cell line) subjected to H

2
O

2
 chal-

lenge, a laboratory setting intended to mimic ischemic–
reperfusion (IR) injury in the liver, resulting in protection 
of hepatocytes against apoptosis (93). It is also worth not-
ing that as well as the ability of MSCs to synthesize pro-
teins that directly repress apoptosis, they are also able to 
secrete cytokines that either neutralize the apoptotic path-
way or enhance survival. Gerber et al. established that 
VEGF could prevent serum starvation-induced apoptosis 
by upregulating Bcl-2 expression in vascular endothelial 
cells (33). VEGF also participated in an antiapoptotic 
process by phosphorylated activation of focal adhesion 
kinase (FAK), a critical prosurvival signal that acts by 
suppressing p53-mediated apoptosis (42,72,73). The bio-
active molecules against apoptosis secreted by MSCs not 
only affect nearby cells but also fulfill their own mission. 
Studies by Wang and colleagues showed that hypoxic 
preconditioning repressed the apoptotic index of MSCs 
by stabilizing mitochondrial membrane potential and ele-
vating the secretion of VEGF and Bcl-2 (124).

Antioxidative Factors

The concept of oxidative stress (OS) was derived from 
the free radical theory of Sohal et al. in their research on 
aging and life span (91,111). OS is initiated by the dis-
equilibrium of oxidation and antioxidation in response to 
physiochemical or physiological stimuli. When an oxi-
dative reaction prevails, the following process should 
occur: infiltration of inflammatory cells, release of pro-
tease, and accumulation of oxidative by-products referred 
to as ROS (reactive oxygen species), including oxygen 
ions, oxygen free radicals, and peroxides. Insufficient 
or surplus ROS may give rise to pathogenesis known as 
ROS-related diseases, such as carcinogenesis, immune 
disorders, inflammation, neurodegeneration, or angiocar-
diopathy (27,47,49,74). Studies by Ohkouchi and others 
highlighted the protective function of MSC-derived stan-
niocalcin 1 (STC1) by reducing ROS-related apoptosis 
(85). STC1 also featured in another article with regard 
to its antioxidative activity in CMCs (69). This indicates 
that the successful harvest of MSCs in heart disease was 
mediated partially by releasing STC1. Another study 
described xenogenic MSC engraftment that ameliorated 
the redox environment in a lipopolysaccharide (LPS)-
induced acute lung injury (ALI) model by enhancing 
expression of antioxidative enzyme heme oxygenase-1 
(HO-1) and reducing expression of malondialdehyde 
(MDA), an indicator of lipid peroxidation (64). The 
enriched concentration of proinflammatory cytokines 
tumor necrosis factor-a (TNF-a), IL-1b, and IL-6, but 
not IL-10, existed in the MSC-treated group and may 
play a role in this modulatory activity. Studies by Zarjou 
et al. supported the importance of HO-1 by the use of 
HO-1−/− MSCs, in which less effective production of SDF1, 
VEGF, and HGF was detected (134). With respect to IR 
injury, MSCs were beneficial; they encouraged expres-
sion of HO-1 in renal IR induced by cisplatin or surgery 
(71,135). Another group who studied neurodegenerative 
dysfunction reported a similar “shield/barrier” effect con-
ferred by MSCs on monoaminergic perikarya and mono-
amine neurotransmitter transporter function exposed to 
nitric oxide (NO)-induced OS. They identified another 
trophic factor, glial-derived neurotrophic factor (GDNF) 
(127). The operative molecules secreted by MSCs vary in 
different experimental settings, probably due to nonuni-
form ROS inductors leading to different levels of ROS 
production. Nonetheless, it is evident that MSC therapy 
has an extensive influence on the redox context due to 
these antioxidative factors.

Cell Migration, Homing/Targeting, and Stimulation

Several studies using different cell tracking approaches 
have revealed that following IV administration, MSCs are 
widely distributed to nonhematopoietic tissues, includ-
ing the gastrointestinal tract, kidney, skin, lung, thymus, 
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and liver. This suggests that MSCs patrol the body until 
triggered by what might be metaphorically compared to 
“criminal behavior” (19,20). Indirect evidence support-
ing this hypothetical notion has been well documented 
in various disease models, in which MSCs showed faster 
mobilization and better retention at sites of injury follow-
ing systemic or local intratissue infusion (10,45,52,95). 
The inherent tumor-trophic migratory properties of MSCs 
have been employed as gene/drug carriers to deliver thera-
peutic, effective, targeted therapy to carcinomas and meta-
static diseases (129). Thus, investigations oriented toward 
the motivation of this migration behavior proliferated. 
The intention was to maximize the therapeutic potential 
of MSCs by establishing a more efficient platform of stem 
cell homing and/or targeting. Several pathways or attrac-
tants have been discovered. Kitaori et al. demonstrated 
that inducible SDF1 expression in the periosteum of a live 
bone graft was required to recruit MSCs for endochon-
dral bone repair (56). By neutralizing SDF1 with an anti-
SDF1 antibody or antagonizing CXCR4 with TF14016, 
new bone formation was significantly reduced following 
IV injection of MSCs. This suggests the involvement of 
the SDF1/CXCR4 axis in MSC-mediated tissue repair 
and regeneration. Under hypoxic conditions, MSCs 
exhibited enhanced mobility toward SDF1 in a concen-
tration-dependent manner, accompanied by elevated cel-
lular CXCR4 expression (134). In accordance with the 
in vitro experiments, the in vivo study showed increased 
MSC retention in the infarct region 5 days after MI, when 
ischemic-related SDF1 reached the fastigium. When cells 
were pretreated with LY294002 [a reagent that selectively 
inhibits phosphoinositide 3-kinase (PI3K)/Akt], a smaller 
number of implanted cells targeted the injured area with 
enlargement of the infarcted fibrotic area compared with 
nontreated cells. This indicated that the PI3K/Akt path-
way was involved in the chemotactic response of MSCs 
to the SDF1/CXCR4 axis. In a separate but similar experi-
ment, the LAD occlusion-induced SDF1 expression in 
the infarcted myocardium resulted in accumulation of 
bone marrow-derived cells delivered by IV injection (1). 
This time, the author employed AMD3100, an antago-
nist of CXCR4, to confirm the instrumental role of the  
SDF1/CXCR4 signaling pathway in regard to stem cell 
homing. Another noteworthy finding in this study was that 
SDF1 alone could not trigger the grafted cells to migrate, 
indicating the requirement for another concomitant secre-
tion or pathway stimulation. In addition, SDF1 serves as 
a chemoattractant signal to the endogenous CXCR4+ stem 
cells. Otsuru’s paper stated that the expression of SDF1 in 
vascular endothelial cells promoted migration of CXCR4+ 
bone marrow-derived osteoblast progenitor cells from cir-
culating blood to the region of osteogenesis (92). In another 
study, Tang et al. reported that CM of genetically modified 
MSCs with VEGF expression that contained more SDF1 

achieved better left ventricular performance than unmodi-
fied MSCs by massive mobilization and homing of bone 
marrow stem cells and cardiac stem cells (116). While 
mounting evidence has demonstrated that upregulation of 
SDF1 is a required, though not unique, signal for better 
localization of stem cell targeting, other studies focused 
on the other side of this axis, that is, CXCR4. Contrary to 
expectations, forced expression of CXCR4 into the myo-
cardium by direct gene transfer prior to MI surgery resulted 
in increased infiltration of inflammatory cells and apoptosis 
of CMCs (14). If the manipulation of CMC–CXCR4 is not 
as beneficial as predicted, it is likely that CMC–CXCR4 
expression serves as an indication of CMCs that are in a 
self-protective state with reduced energy consumption, or 
even hibernating as a means of surviving in the ischemic 
episode. The necessity of myocardial CXCR4 expression 
was analyzed recently using a conditional CMC–CXCR4 
null mouse model (23). In the CMC–CXCR4 null mice, 
increased numbers of CMCs underwent programmed cell 
death in the border zone following MI plus stem cell ther-
apy. This phenomenon diminished in the absence of stem 
cell infusion. In addition, far more CPCs accumulated and 
localized in response to MSCs in the wild-type mice com-
pared with CMC–CXCR4 null mice. Consequent to this, 
the concept was proposed that CMC–CXCR4 expression 
is required in MSC-mediated cytoprotection and CPC 
recruitment. Based on these data, it is possible to decipher 
a reciprocal relationship between the cells, either endog-
enous or exogenous, and surrounding milieu regarding 
SDF1/CXCR4 binding in the presence of MI: the increas-
ing MI-induced SDF1 in the infarct region helps to attract 
endogenous CXCR4+ stem cells, in addition to migration 
of exogenous MSCs to the lesion as a result of the increas-
ing concentration of SDF1; the localized and stabilized 
distribution of stem cells then augments the SDF1 signal 
by synthesizing and releasing more SDF1; this process 
works as an amplifying hierarchy, within which CMC–
CXCR4 expression is required for the implanted MSCs 
to recruit cardiac stem cells.

In addition to chemotactic-like properties, MSCs also 
help revitalize endogenous stem cells to accumulate and 
proliferate. Using the in situ chromosome Y FISH tech-
nique, Lin et al. distinguished male donor bone marrow 
cells from female host cells and established that bone 
marrow cells accounted for only 11% of the proliferat-
ing epithelial cells in a kidney IR model. This suggests 
a regenerative capacity generated by the inherent hiber-
nating stem via revitalization or rejuvenation (68). In the 
pig MI model, c-kit (v-kit Hardy–Zuckerman 4 feline sar-
coma viral oncogene homolog) and Ki-67 (antigen identi-
fied by monoclonal antibody Ki-67) were detected at the 
peri-infarct region in the MSC-treated group, implying 
endogenous stem cell recruitment and reentry of CMCs 
to the cell cycle and duplicate status (6). MSCs–CM were 
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as able as MSCs to mobilize cardiac stem cells in the first 
3 days, suggesting that the paracrine signaling accounted 
for part of the stem cell homing effects in the acute phase, 
though not comparable with what could be achieved from 
direct MSC delivery in long-term results (37). In addition 
to SDF1, other members of the MSC secretion pool, such 
as HGF and IGF, were also shown to enhance mobiliza-
tion and proliferation of cardiac stem cells (121).

REGULATION OF PARACRINE 
BIOLOGY OF MSCs

Gnecchi’s group reported approximately 650 tran-
scripts that expressed differentially between Akt–MSCs 
and vector–MSCs (70). This suggests that genetic modi-
fication of MSCs by overexpression of one pivotal gene 
that acts as a “switch” might alter the profile of the 
released factors and thus maximize the therapeutic poten-
tial. Intense efforts have been made to hone MSCs and 
make them more effective and efficient. The paracrine 
effects should hold most appeal because of the wish to 
have an extensive, stable, and lasting mode of action.

Preconditioning of MSCs

Gnecchi et al. demonstrated that hypoxic treatment 
of the Akt–MSCs facilitated release of trophic factors 
such as VEGF, bFGF, HGF, IGF, and TB4 (35). The 
hypoxic Akt–MSCs–CM provided cytoprotection and 
induced spontaneous contraction of the adult rat ven-
tricular cardiomyocytes (ARVCs) when exposed to pro-
longed hypoxia. Other groups compared the secretome 
in normal and hypoxic conditions: most suggested that 
the contents of the concentrated medium of MSCs cul-
tured in a hypoxic environment were superior. Chang et 
al. reported that both HGF and VEGF were elevated in 
the MSCs maintained in 0.5% oxygen for 24 h (13). They 
then concentrated the medium and injected it into the rat 
traumatic brain injury (TBI) model every 12 h consecu-
tively for 3 days, with consequent findings of increasing 
neurogenesis as well as alleviation of motor and cogni-
tive dysfunction. Another group highlighted the fact that 
under normal physiological conditions, MSCs originate 
in areas of low oxygen concentration such as bone mar-
row. They thus need to accommodate themselves to the 
higher oxygenation that is present when they are isolated 
and expanded ex vivo (21% oxygen) (104). They then 
need to immediately reacclimatize to a hypoxic state 
when applied as a cell source for ischemic disease mod-
els. Subjecting MSCs to a premature hypoxic period may 
allow them a “buffering period” and thus improve their 
tissue regenerative potential. In this project, it was shown 
that preculturing MSCs in a low-oxygen environment 
activated the Akt and met proto-oncogene (cMET, recep-
tor of HGF) signaling pathway, contributing to enhanced 
neovascularization and stem cell homing in a surgical 

hindlimb ischemia model. Another study by Leroux et al. 
also went some way to confirm that hypoxic precondi-
tioning of MSCs promoted their survival capacity, and 
vascular and tissue reconstruction, albeit via a wingless-
related mouse mammary tumor virus (MMTV) integra-
tion family, member 4 (Wnt4)-dependent pathway (63).

In addition to physiological preconditioning, another 
feasible method may be cytokines/chemicals. Application 
of cytokine/chemicals by three different ways improved 
the therapeutic efficiency of MSCs: administration of 
cytokines/chemicals to MSCs prior to transplantation, 
aimed at optimizing the secretome with better migration 
toward the injured tissue; pretreatment at the site of injury, 
with the objective of attracting more stem cells for tissue 
repair; or simultaneous injection of cytokines/chemicals 
and MSCs. As an example, Luo et al. pretreated MSCs 
with IL-1b and TGF-b, and showed synergistic advantages 
of this combination on VEGF production, as well as func-
tional restoration post-MI (75). Pasha et al. showed SDF-
1-pretreated MSCs suppressed cell apoptosis, enhanced 
engraftment increased vascular density, and improved 
myocardial function via SDF/CXCR4 signaling (94). Cui 
et al. indirectly upregulated SDF1/CXCR4 expression 
with a nitric oxide donor, diethylenetriamine (DETA)-
NONOate (17). They demonstrated that preconditioning 
of the animal with DETA-NONOate 24 h following mid-
dle cerebral artery occlusion promoted MSC engraftment. 
In Pons’s study, VEGF and MSCs were coinjected to MI 
hearts, which then showed the expected improvement in 
stem cell mobilization and cardiac function (99).

Genetic Modification of MSCs

Their ability to migrate toward damaged tissue makes 
MSCs the optimal vector for therapeutic agents. Gnecchi 
et al. not only defined the paracrine mechanism but also 
demonstrated that genetically engineered MSCs with 
Akt expression were superior to vector–MSCs in many 
aspects (34,35). Since then, many attempts have been 
made to equip MSCs with curative genes to aid functional 
recovery. Li et al. engineered MSCs with Bcl-2, and the 
modified cells presented better apoptotic tolerance, cell 
survival, and more VEGF secretion than control MSCs 
(65). Other genetically engineered MSCs, including 
those for survivin, SDF1, CXCR4, HGF, PI3K, and IGF, 
showed similar results of improving angiogenesis, left 
ventricular ejection fraction (LVEF), endogenous stem 
cell recruitment, contractile function, and reduction of LV 
remodeling effects (24,25,58,112,115,128). Most of these 
selected genes are considered to be trophic factors secreted 
by physiological MSCs or possess the ability to activate 
Akt signaling directly or indirectly, based on maintaining 
the fundamental characteristics of MSCs and safety con-
cern. Genetic manipulation could improve cell survival 
and control the MSC secretome by engineering the gene 
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of interest; nonetheless, overexpression could bring unex-
pected effects, either from the delivering approach or the 
targeting genes. For example, overexpressing bFGF or 
platelet-derived growth factor-b (PDGF-b) led to highly 
proliferating MSCs and increases in osteogenesis, while 
upregulation of TGF-b1 hindered both osteogenic and 
adipogenic differentiation (26). It should nonetheless be 
noted that while the genetically modified MSCs showed 
enhanced therapeutic efficacy, a very stringent evaluation 
of their physiological characteristics with regard to safety 
and undesired effects is required prior to their application 
in clinical trials.

IMPORTANT PARACRINE FACTORS OF MSCs 
IN MODULATION OF TISSUE REPAIRS

Paracrine Factor-Activated MSCs in Immunomodulation

Mesenchymal stem cells have the ability to suppress 
the immune response and can even induce immune toler-
ance in certain conditions through cell–cell contact and 
soluble factors. An increasing number of studies have sug-
gested that the soluble factors of MSCs are a key require-
ment of their immune regulatory properties (30,114,130). 
Liu et al. demonstrated that the immunogenicity of MSCs 
was heightened during the increasing passage number and 
could not suppress lymphocyte proliferation in vitro (70). 
Nonetheless, soluble factors collected from the coculture 
of MSCs and lymphocytes could suppress lymphocyte 
proliferation without the need for cell–cell contact. Ren 
et al. found that the proinflammatory cytokine-activated 
MSCs could secrete chemokines to recruit lymphocytes 
(102). The MSCs concentrated their action on the localized 
lymphocytes by secreting TGF-b and NO with two effects: 
inhibition of proliferation and promotion of apoptosis. 
Yang et al. reported that soluble factors from the culture 
supernatant of MSCs could suppress T-cell proliferation, 
in which IL-10 and IDO played important roles (132). 
TGF-b, HGF, prostaglandin E2 (PGE2), HLA-G5, IL-6, 
CCL2, CCL5, and other chemokines have also shown that 
the paracrine mechanism of MSCs can modulate regulatory 
T-cells (Tregs) and the immune response (39,84,105,118).

Polchert et al. found that IFN-g-pretreated MSCs 
reduced GvHD more efficiently than the MSCs with-
out IFN-g pretreatment (98). It has been suggested that 
the immunomodulatory ability of MSCs is activated by 
inflammatory factors secreted by lymphocytes. In the 
acute host versus graft reaction (HvGR) and graft versus 
host reaction (GvHR), the activated Th1 cell releases cyto
kines such as IL-2 and IFN-g to promote lymphocyte pro-
liferation and amplify the immune response. Alternately, 
these proinflammatory cytokines also revitalize the immu-
nosuppressive properties of MSCs, which release soluble 
factors in turn to suppress HvGR and GvHR.

MSCs have demonstrated their practical application in 
terms of HvGR and GvHR in vivo. Aksu et al. reported 

that autologous MSCs could limit the toxicity of alloge-
neic bone marrow transplantation and delay GvHD onset 
when coinfused four times with unmodified donor bone 
marrow (3). Ge et al. found that infusion of MSCs with 
rapamycin achieved long-term cardiac allograft survival 
by inducing Tregs that could suppress the acute rejection 
response and induce immune tolerance (32). Other stud-
ies have demonstrated that soluble factors such as TGF-b 
can promote the viability of regulatory cells, indicating 
an indirect pattern to modulate the immune response 
(118,131). Despite these advances, the use of the para-
crine effects of activated MSCs to treat organ transplanta-
tion and GvHD remains in its infancy, and further animal 
and human studies are required.

Paracrine Factors and Cardiovascular Diseases

MSCs have emerged as a very promising cell type 
for the treatment of cardiovascular disease both in small 
animal studies and large animal models (15,53,67,​78,​
96,106,120,133). The exact extent to which these cells 
form new cardiac myocytes and improve cardiac function 
nonetheless remains highly controversial (7,81). The dis-
proportion between tremendous functional recovery and 
low rates of cell engraftment and persistence suggests an 
indirect primary mechanism other than structural inte-
gration of transplanted cells into ischemic myocardium. 
Thus, the ability of MSCs to produce a variety of trophic 
and immunomodulatory factors that can directly promote 
cell survival and reduce inflammation posttransplanta-
tion has attracted great attention (7,34,81,119). While 
Gnecchi and Kinnaird have already focused on the car-
dioprotective properties of MSCs via a paracrine effect 
(34,35,54,55,57,70,79,80), the current focus is to locate 
the most efficient factors with high tissue specificity or 
optimal design with synergistic effects to maximize myo-
cardial survival postinfarction. For instance, Gnecchi’s 
research identified secreted frizzled-related protein 2 
(Sfrp2) as the most dramatically upregulated protein (100-
fold in transcriptional level) in the Akt–MSCs (70). As an 
extension of this research, He and others confirmed the 
tissue-regenerative capacity of Sfrp2 by simple admin-
istration to the infarcted areas (4,38,80). Zhang et al. 
proposed that combined treatment with Wnt11 and bone 
morphogenetic protein 2 (BMP-2) increased the cardio-
myogenic potential of MSCs and raised the possibility 
that preconditioning MSCs with inducible factors might 
augment the transdifferentiation odds (137). Indeed, the 
paracrine mechanism of MSCs facilitates the discovery 
and discrimination of the most powerful soluble factors 
and, above all, makes possible the broader future applica-
tion and conversion of these factors into novel therapeutic 
applications for clinical off-the-shelf therapy. Kanki et al. 
showed intracoronary injection of SDF1 could improve 
ventricular function in experimental ischemia/reperfusion 
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injury even 3 h after the onset of ischemia (51). In a clini-
cal trial of 178 patients, high-dose VEGF administration 
improved treadmill tests, angina class, and quality of life 
assessments at day 120 (40). Nonetheless, not all the ben-
eficial cytokines identified from the MSCs–CM achieved 
satisfactory consequences as expected. For example, 
granulocyte-colony-stimulating factor (G-CSF) alone 
did not yield any encouraging alteration in MI patients, 
despite its definite safety and feasibility (103,122). The 
reasons for this contradiction might be varied: the dose, 
timing, and delivery method need to be optimized; the 
combination of cytokines at different concentrations and 
time points might heighten the synergistic effects. Though 
these issues still wait to be addressed, it is worth noting 
that non-cell-based alternative cytokine delivery does 
circumvent the major drawbacks such as quantification 
control, immunological rejection, concerns about infec-
tion and carcinogenesis, compared with direct stem cell 
injection. It also facilitates the establishment and optimi-
zation of curative standard.

EXOSOME AND MITOCHONDRIAL 
TRANSFER FOR TISSUE REPAIR

Timmers and colleagues demonstrated that IV and intra-
coronary injection of MSC–CM significantly restored ven-
tricular performance in a porcine model of IR injury (119). 
Of note, only the CM-containing products >1,000 kDa 
(100–220 nm) contributed to the cytoprotective effects, 
implying that the paracrine signaling might function 
as a large complex rather than a single small molecule. 
Coimmunoprecipitation by ultracentrifugation identified 
that these particles contain plasma membrane phospho-
lipids such as cholesterol, sphingomyelin, and phosphati-
dylcholine, as well as exosome-associated proteins CD81, 
CD9, and apoptosis-linked gene 2-interacting protein X 
(Alix). Electron microscopic examination of the size and 
morphology revealed that this group of bioactive particles 
released by MSCs were exosomes (60). The purified exo-
somes at a dose of 0.4 μg were then delivered to an IR 
injury 5 min prior to reperfusion and showed comparable 
capacity in reducing infarct size to that of a 3.0-μg dose of 
MSC–CM. Proteomics, transcriptomics, miRNA array, or 
other high-throughput technologies are practical to exploit 
the content in the vesicles. With proteomic profiling using 
mass spectrometry and antibody array, Lai et al. reported 
857 proteins in the exosome proteome, in which 20S pro-
teasome was determined as the main contributor to cardio-
protection by reducing the amount of misfolded proteins 
during acute MI (61). It appears that MSCs are working 
in a more intelligent and efficient way than we expect by 
encapsulating functional proteins or regulatory RNAs into 
exosomes, via whose phospholipid envelop a rapid intra-
cellular delivery pathway is created, thus allowing MSCs 
to mount an early response to stimuli.

Contrary to this, the most recent work by Islam et al. 
provided in vivo evidence of mitochondrial transfer 
from MSCs to host cells in the ALI model induced by 
LPS instillation (43). With live imaging, they observed 
instilled MSCs attached to the alveoli and intercellular 
dye exchange began, suggesting the involvement of gap 
junctional channels (GJCs). Fluorescence recovery after 
photobleaching (FRAP) occurred in alveolus-attached 
MSCs, affirming the existence of GJCs. The FRAP could 
be blocked by a nonspecific GJC blocker or the specific 
connexin43 (Cx43) inhibitor, providing further reverse 
proof of the involvement of GJCs and Cx43 in cell–cell 
contact between MSCs and the alveolar epithelium. The 
expression of GJC-competent Cx43 was indispensable to 
mediate a successful mitochondrial transfer, supported by 
the evidence that either mutant Cx43 or ablation of Cx43 
led to failure of GJC formation. The internalized mito-
chondria acted functionally by increasing the ATP con-
centration in the recipient pulmonary alveoli, leading to 
bioenergetic restoration and protection in the acute phase 
of lung injury. Nevertheless, this successful delivery 
also compromised the energy of MSCs with a resultant 
decrease in other cell behaviors that benefit the surround-
ing or remote areas, such as secretion capability, migra-
tion ability, and exosome packaging. It was clear that the 
MSCs played multiple roles, trying to repair or normalize 
the tissue during disease emergencies, though the com-
bined or neutralized effects and the proportions of each 
substation among these different modes of action require 
further investigation.

PERSPECTIVE

It is undisputable that MSC therapy contributes to res-
toration of structural integrity and functionality of dam-
aged tissue, but their fundamental and detailed biological 
mechanisms require further elucidation. The many effects 
of MSCs, including transdifferentiation, cell fusion, para-
crine, exosome secretion, and mitochondrial transfer, 
each have drawbacks that need to be addressed before 
maximal benefit is obtained: transdifferentiation and cell 
fusion seem to occur in too low a frequency to account 
for the meaningful improvement; exosome secretion and 
mitochondrial transfer faces the problem of finding a 
robust and scalable cell source with sufficient quantity 
and quality to generate exosome encapsulation and energy 
transportation. With regard to paracrine actions, the limi-
tations must not be overlooked. For instance, some cyto
kines or chemokines released from MSCs may be harmful, 
such as TNF-a and IL-6. This may explain the modest 
benefit of MSC transplantation observed in clinical trials 
(126). Nonetheless, mounting evidence suggests that the 
secretion profile can be readily improved by precondi-
tioning or genetic manipulation. Furthermore, the para-
crine action provides the possibility to apply one trophic 
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factor alone or combined as a cocktail therapy for disease-
oriented treatment. The advantage of MSC-based therapy 
is that it can maintain a sustainable moderate release and 
concentration of the trophic factors that might be varied 
according to diverse microenvironments and situations. 
It seems that these cells are working smartly and system-
atically, to adapt themselves in harsh disease conditions, 
with the aim of restoring physiological status. Thus, the 
paracrine effects of MSCs hold great promise as a con-
trollable, manageable, and feasible route, by which the 
transition from bench to bedside becomes more feasible 
in the near future.
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