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Mesenchymal Stem Cell Therapy Alleviates Interstitial
Cystitis by Activating Wnt Signaling Pathway
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Interstitial cystitis (IC) is a syndrome characterized by urinary urgency, frequency, pelvic pain, and nocturia in
the absence of bacterial infection or identifiable pathology. IC is a devastating disease that certainly decreases
quality of life. However, the causes of IC remain unknown and no effective treatments or cures have been
developed. This study evaluated the therapeutic potency of using human umbilical cord-blood-derived mes-
enchymal stem cells (UCB-MSCs) to treat IC in a rat model and to investigate its responsible molecular
mechanism. IC was induced in 10-week-old female Sprague—Dawley rats via the instillation of 0.1 M HCI or
phosphate-buffered saline (PBS; sham). After 1 week, human UCB-MSC (IC+MSC) or PBS (IC) was directly
injected into the submucosal layer of the bladder. A single injection of human UCB-MSCs significantly
attenuated the irregular and decreased voiding interval in the IC group. Accordingly, denudation of the epi-
thelium and increased inflammatory responses, mast cell infiltration, neurofilament production, and angio-
genesis observed in the IC bladders were prevented in the IC+MSC group. The injected UCB-MSCs
successfully engrafted to the stromal and epithelial tissues and activated Wnt signaling cascade. Interference
with Wnt and epidermal growth factor receptor activity by small molecules abrogated the benefits of MSC
therapy. This is the first report that provides an experimental evidence of the therapeutic effects and molecular
mechanisms of MSC therapy to IC using an orthodox rat animal model. Our findings not only provide the basis

for clinical trials of MSC therapy to IC but also advance our understanding of IC pathophysiology.

Introduction

INTERSTITIAL cysTITIS (IC) 1S a syndrome characterized by
urinary urgency, frequency, pelvic pain, and nocturia in the
absence of bacterial infection or identifiable pathology [1]. IC
is an obstinate disease that certainly decreases quality of life;
however, only a few treatments have been reported and, most
especially, curable treatments have not been identified. Al-
though the etiology of IC is not fully understood, in general,
the IC bladder is characterized by a thin and denuded uro-
thelium [2]. The altered synthesis of several proteoglycans,
cell adhesion proteins, and tight junction proteins is respon-
sible for the loss of urothelial integrity observed in IC patients
[3.4] The resulting leaky urothelium has been proposed as the
cause of the bladder symptoms observed in IC patients [5].
Thus, regenerating the epithelium is of major interest for IC
treatment. However, its precise molecular nature remains
unknown.

Epithelial integrity is dynamically regulated via the ho-
meostatic proliferation and differentiation of organ-specific
stem and progenitor cells, which generally reside in the
basal layer of the epithelium [6,7]. The activity of these cells
is dependent on the turnover of these tissues. For example,
the progenitor cells in the intestines are continually and
constantly involved in epithelial regeneration [8]. Unlike
epithelial turnover, however, the urinary bladder is rela-
tively stable. Thus, urothelial and stromal cells remain in a
near quiescent state during normal physiology, though they
will enter a highly proliferative state in response to epithe-
lial injury [9,10]. Rapidly proliferating epithelial cells in the
intestines and skin characteristically activate several mor-
phogenic factors, including the Sonic hedgehog (Shh) and
the Wnt cascade, which are responsible for self-renewal in
tissue-residing stem cells [11,12]. Similarly, these signals
are involved in maintaining homeostasis in the urothelium
[13,14]. In particular, the Shh and Wnt proteins positively
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mediate the interplay between the stem cells in the basal
layer and the nearby stromal cells, which is responsible for
activating cellular proliferation within the bladder in re-
sponse to bacterial infections or chemical injury [10]. Thus,
dysfunctional urothelial integrity in IC patients could be
cured by reinforcing the regenerative potency of basal stem
cells in the bladder.

Mesenchymal stem cells (MSCs) are multipotent pro-
genitor cells that are able to differentiate into a range of cell
types, including the mesoderm- (eg, muscle, stroma) and
ectoderm-lineage tissues (eg, epithelium and neuron) [15-
18]. MSCs secrete several cytokines and growth factors that
provide beneficial paracrine effects [19]. MSC therapy is
considered a novel therapeutic approach for the treatment of a
number of bladder disorders [20-30]. However, no studies to
date have investigated MSC therapy to treat IC. Importantly,
our recent study demonstrated that injected MSCs ameliorate
overactive blabber by activating endogenous Oct4 * primitive
stem cells [27]. Here, we evaluate the therapeutic potency of
MSC therapy as a cure for IC in a traditional animal model and
investigate the possible role of Wnt and epidermal growth
factor (EGF) signaling in MSC therapy.

Materials and Methods
IC rat model

To induce IC, the bladders of twenty 10-week-old female
Sprague—Dawley rats were instilled with 0.1M HCI for
10 min via the urethra using a 26-gauge angiocatheter, fol-
lowed by neutralization and washing with saline. For the
sham group (n=15), phosphate-buffered saline (PBS) was
used as the vehicle instead of HCI. One week after HCL in-
stillation, an abdominal incision was made and either 1 X 10°
umbilical cord-blood-derived mesenchymal stem cells (UCB-
MSCs) (IC+MSC group; n=15) or PBS vehicle (IC group;
n=15) was directly injected into the submucosal layer of the
anterior wall and dome of the bladder using a 500-pum syringe
and a 26-gauge needle. One week after UCB-MSC injection,
conscious cystometry was conducted to assess the therapeutic
potential of the transplanted MSCs. Indomethacin (Indometa
Cap®; PMG Pharm Co., Ltd.) was subcutaneously injected
every 12h to block Wnt signaling (injections were adminis-
tered starting 1 day before stem cell injection). Likewise, epi-
dermal growth factor receptor (EGFR) signaling was blocked
by the daily subcutaneous injection of 5 mg/kg Gefitinib (Santa
Cruz Biotechnology, Inc.).

Culturing UCB-MSCs

The human UCB-MSCs used in this study were donated
by Medipost Co., Ltd. UCB-MSCs were separated as pre-
viously described [31,32] and maintained in Dulbecco’s
modified Eagle’s medium-high-glucose (Hyclone) supple-
mented with 2mM L-glutamine, 20 mM HEPES (pH 7.3),
MEM nonessential amino-acid solution, penicillin/strepto-
mycin (Cellgro), 1 pg/mL ascorbic acid (Sigma), 10% heat-
inactivated FBS (Hyclone), 5 ng/mL human EGF, 10 ng/mL
basic fibroblast growth factor, and 50 pg/mL Long R3
insulin-like growth factor-1 (IGF1; Prospec) in a 37°C hu-
midified atmosphere that contained 5% CO,. UCB-MSCs
were allowed to expand for six passages and then trans-
planted to ensure multipotency. The cultured UCB-MSCs
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were labeled with PKH26 Red Fluorescent Cell Linker Kits
(Sigma) according to the manufacturer’s instructions; then,
engraftment and transdifferentiation were assessed.

Cystometry

Conscious cystometry was performed by placing a con-
scious rat under restriction. A midline suprapubic incision
was made to expose the bladder, which was accessed using
an inflatable polyethylene-50 tube (Clay-Adams) that was
connected to a pressure transducer. Sterile saline was infused at
a rate of 40 pL/min via a syringe pump (Harvard-Apparatus).
Analysis was performed using a UDS-120XLT urodynamic
measurement system (Laborie-Medical-Technologies). In-
travesical pressure was analyzed and recorded using a pres-
sure analyzer and a personal computer-based data acquisition
system.

Histo- and immunohistochemical analyses

After 24h of fixation in 4% paraformaldehyde, each
bladder was embedded in paraffin, sectioned to 3 pm using a
microtome, and stained with hematoxylin and eosin. The
integrity of the epithelium, localization of the nerve fibers,
and angiogenesis in the bladder were further examined by
staining with antibodies against pan-specific cytokeratin
(CK; Sigma), neurofilament 200 (N200; Abcam), and CD31
(Santa Cruz Biotechnology), respectively. Reactions were
visualized using the UltraVision LP detection system, and 3-
amino-9-ethylcarbazole (AEC) was used as the chromogen
(Thermo Scientific). Mast cell infiltration and tissue fibrosis
were detected using Toluidine blue staining (Toluidine blue-
O; Daejung Chemicals & Metals co.) and Masson’s trichrome
staining (Junsei Chemical), respectively. Each slide was mi-
croscopically inspected; 10 randomly chosen representative
areas from the light microscopic images were selected, and
quantitative digital image analysis was performed using Image
Pro 5.0 software (Media-Cybernetics). For the immunofiuo-
rescent analysis, epithelial and stromal tissues from the blad-
der were stained using antibodies specific to CK and vimentin
(Santa Cruz Biotechnology), respectively, followed by visu-
alization using Alexa® 488-conjugated anti-mouse or -rabbit
antibodies (Molecular Probes). Nuclei were counterstained
using 4’,6-diamino-2-phenylindole (DAPI). The status of Wnt
signaling was determined using immunofluorescent analysis
for non-phospho B-catenin (Cell Signaling Technology).

Western blot

The tissue extracts of the bladders were prepared in RIPA
lysis buffer (Santa Cruz Biotechnology, Inc.). Proteins were
quantified using the BCA method (Thermo Scientific), and
50 pg of extracts were separated using 10% SDS-PAGE
gels. Protein levels were assessed by probing with the non-
phospho [-catenin, phospho B-catenin (Ser33/37/Thr4l;
Cell Signaling Technology), and B-actin (Santa Cruz Bio-
technology, Inc.).

Reverse transcriptase and real-time quantitative
polymerase chain reaction

Isolation of total RNA from the bladder tissues and
quantitative assessment of the expression levels of the target
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genes was performed using real-time quantitative polymer-
ase chain reaction (RQ-PCR), as previously described [33].

Proliferation assay of human or rat bladder
epithelial cells

HBIEpC, a primary epithelial cell derived from normal
human bladder (Cell Applications, Inc.), was maintained in
Bladder Epithelial Cell Growth Medium (Cell Applications,
Inc.), according to the manufacturer’s instructions. The ep-
ithelial cells from rat bladders were dissociated by digest-
ing the minced bladder tissues with 2mg/mL collagenase
(Sigma) for 10 min at room temperature. The dissociated
cells were plated into a tissue culture dish (VWR Corporate)
and maintained in Bladder Epithelial Cell Growth Medium.
5x10* human or rat bladder epithelial cells were seeded in a
96-well culture plate, followed by stimulation with condi-
tioned medium (CM), which was harvested during cultiva-
tion of IMR90, a human normal fibroblast or UCB-MSCs,
for 1 day. Cell proliferation after treatment with CM for
the indicated days in the absence or presence of a chemical
inhibitor of Wnt product (IWP) compound, IWP-2 (Sigma),
was determined using the MTT assay (Sigma) according to
the manufacturer’s instructions. Reduction of the MTT re-
agent was performed for 4 h and quantified by measuring the
absorbance at 570 nm using a microplate spectrophotometer
(Molecular Devices).

Statistical analysis

Differences in the cystometric and RQ-PCR results were
analyzed using the student z-test or one-way analysis of
variance with the Bonferroni post hoc testing. We used
GraphPad Prism 6.0 software (GraphPad Software) to per-
form all analyses, and statistical significance is defined as
P<0.05 or 0.01. All primers used in the RQ-PCR assay are
available on request.
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Study approval

All animal experiments were approved by the Institu-
tional Animal Care and Use Committee of the University of
Ulsan College of Medicine (IACUC-2013-13-010). Umbi-
lical cord blood was collected from umbilical veins after
neonatal delivery with the informed consent of the mothers.

Results
Evaluation of bladder function

To assess the therapeutic potential of the transplanted
UCB-MSCs, we examined the voiding function of the
bladders by performing the conscious cystometric analysis,
which is used to evaluate the bladder’s capacity to contract
and expel urine. As shown in Fig. 1, most rats in the IC group
exhibited irregular voiding frequency and decreased the inter-
contraction interval in comparison with the sham group
(201.8+81.7 vs. 330.0£143.6, respectively; P<0.05). A
single injection of UCB-MSCs significantly increased the
inter-contraction interval (343.1+131.6s, P<0.05), suggest-
ing that UCB-MSC therapy ameliorated bladder voiding
function in our rat model of IC (Fig. 1B).

Histo- and immunohistochemical analyses

We next examined the histological features observed in
the IC patients, including epithelium denudation, abnormal
increases in inflammation, neurofilament production, and
angiogenesis [34,35]. Compared with the sham-operated
rats, the bladder tissues in the IC group demonstrated severe
inflammation (Fig. 2A) and the infiltration of Toluidine
blue-stained mast cells (Fig. 2B), which were remarkably
abrogated by UCB-MSC injection. The epithelial layers
were densely stained with CK (an epithelium-specific pro-
tein) and markedly low in the IC+PBS group (Fig. 2C),
suggesting the induction of epithelial denudation in our IC
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FIG. 1.

UCB-MSC injection improved voiding function in an IC bladder. (A) Representative conscious cystometry results

and (B) contraction intervals in the indicated animal groups at 1 week after the injection of mesenchymal stem cells
(MSCs). Data are represented as the mean+ SEM (n=12; P<0.05 in comparison with sham-operated and IC group, one-
way ANOVA with Bonferroni post-test). Notably, IC bladders injected with UCB-MSC (IC+MSC) demonstrated normal
voiding patterns in comparison with bladders injected with PCB (IC). ANOVA, analysis of variance; IC, interstitial cystitis;
UCB-MSC, umbilical cord-blood-derived mesenchymal stem cell.
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FIG. 2. UCB-MSC therapy ameliorated histological abnormalities in IC bladder. (A) Hematoxylin and eosin staining in
the indicated bladder tissues (magnification x200). Nuclei were stained with Mayer’s hematoxylin. Arrows indicate severe
inflammation. Toluidine (B; magnification x400) and cytokeratin staining (C; magnification x200) was used to evaluate
the infiltration of master cells and the integrity of the urothelium, respectively. Arrows indicate the broken urothelium.

animal model. In particular, UCB-MSC injection amelio-
rated the lining of the epithelium and sustained staining
intensity in the urothelium. In addition, the abnormal in-
crease in N200* neurofilaments and CD31" vessels ob-
served in the IC group bladders was hardly detectable in the
IC+MSC group (Supplementary Fig. S1A, B; Supplemen-
tary Data are available online at www.liebertpub.com/scd).
Accordingly, the bladders from the IC group highly expressed
the transcripts of several angiogenesis promoting growth
factors, including Vegfa and Pdgfb; however, they were sig-
nificantly suppressed in IC+MSC group bladders (Supple-
mentary Fig. S1C). It is reported that IC is associated with
fibrosis of layers of the bladder wall [36]. Thus, we performed
Masson’s trichrome staining of the bladder tissues in each
group. Compared with the sham group, the tissue fibrosis was
significantly increased in the IC group bladder. The injection
of UCB-MSCs ameliorated the bladder tissue fibrosis, al-
though it was not statistically significant (Supplementary Fig.
S2). Taken together, these results indicate that HCl-mediated
IC reproduces similar histological alternations that were

found in the IC patients, and that MSC therapy cures most IC
characteristic pathologies, including epithelial denudation
and abnormal inflammation, neural networks, and angio-
genesis in the bladder.

Differentiation fates of engrafted UCB-MSCs

To determine the engraftment and differentiation fates of
UCB-MSC, we labeled the stem cells with PKH26 red
fluorescent dye before injection. Cells labeled with PKH26
red fluorescent labeling probes were observed in most
bladders in the IC+MSC group, and the majority of these
were broadly distributed throughout the lamina propria near
the basal layer of the urothelium, though less so within the
muscular layer (data not shown). In particular, UCB-MSC-
derived PKH26™ cells colocalized within both CK™ epi-
thelial (Fig. 3A) and vimentin™ stromal cells in the bladders
(Fig. 3B), indicating that the engrafted UCB-MSCs re-
generated the damaged bladder through direct differentia-
tion into the urothelium and nearby stromal tissue.
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FIG. 3. Engraftment of in-
jected UCB-MSCs. Fluor-
escent immunohistochemical
detection of the PKH26-
labeled UCB-MSCs (red),
which colocalized with (A)
cytokeratin® urothelium and
(B) vimentin® stromal tissue
(green) in the IC bladder tis-
sues at 1 week after stem cell
injection. Nuclei were stained
with DAPI (blue). The dotted
line indicates the margin be-
tween the urothelium and
stromal tissues. The left and
right panel images are magni-
fied %200 and %400, respec-
tively. DAPI, 4’,6-diamino-2-
phenylindole.

CK : Green
MSC : Red (PKH26)

Vimentin : Green
MSC : Red (PKH26)

Upregulation of Wnt and downstream growth factors
via MSC injection

We next investigated the molecular mechanisms that
cause the beneficial effects of UCB-MSC. In response to
urothelium damage, the Shh and Wnt signaling cascades are
activated for bladder regeneration by stimulating the en-
dogenous stem cells that mainly reside in the basal layer of
the urothelium [10]. Thus, we examined the expression
levels of these signaling components and the downstream
growth factors implicated in bladder regeneration [10].
Compared with the sham group, several Shh and Wnt sig-
naling genes were generally downregulated in IC group
(Fig. 4A—C and Supplementary Fig. S3). Of note, UCB-
MSC injection significantly upregulated the majority of
these genes, including smoothened (Smo) (Fig. 4A), Wnt2b,
Wnt5a, WntSa, Wnt8b, Wntl0a, Wntll (Fig. 4B), and as-
sociated growth factors, including Notchl, fibroblast growth
factor-16 (Fgfl16), Egf, and insulin-like growth factor 2
(Igf2) (Fig. 4C). Accordingly, the IC+MSC group bladders
demonstrated increases in non-phospho B-catenin protein
and simultaneously decreases in P-catenin protein phos-
phorylated at serine 33, 37, and threonine 41 that indicate
the activated status of Wnt signaling [37] (Fig. 4D and
Supplementary Fig. S4). Importantly, the nuclear staining of
non-phospho B-catenin protein, a surrogate marker for Wnt
signaling activation, was mainly observed in the basal uro-
thelial layer, which is the main niche of the endogenous
bladder stem cells (Fig. 4D).

Significance of the Wnt and EGFR signaling
cascades in MSC therapy

To address the biological significance of Wnt and
downstream EGF, we used indomethacin [38] and Gefitinib
[39] to inhibit Wnt and EGFR signaling activity, respec-
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CK : Green
MSC : Red (PKH26)

Vimentin : Green
MSC : Red (PKH26)

tively. Importantly, both small molecules significantly im-
peded the recovery of bladder voiding function in IC+MSC
bladders (Fig. 5A). Accordingly, regeneration of the epi-
thelial layer was severely impaired by the inhibition of Wnt
and EGFR signaling, although the injected stem cells were
well engrafted (Fig. 5B). Repressing Wnt signaling activity
was confirmed by the reduced number of cells stained with
non-phospho beta-catenin protein (Supplementary Fig. S5).
Gene expression analysis indicated that treatment with in-
domethacin prevented the upregulation of growth factors,
including Igf1, Fgf16, and Egf, but had little effect on Wnt
gene expression (Fig. 6 and Supplementary Fig. S6). In-
stead, administrating Gefitinib impacted the expression of
most genes involved in Shh-Wnt signaling (Fig. 6). Taken
together, these results indicate that the Wnt-EGF signaling
cascade plays a crucial role in UCB-MSC-mediated ur-
othelial regeneration of the IC bladder.

Discussion

This study provides the first experimental evidence that
UCB-MSC therapy leads to stable therapeutic outcomes and
relieves IC by regenerating the bladder epithelium by
stimulating the Wnt-EGF signaling cascade. IC, including
painful bladder syndrome, is a chronic bladder disease of
unknown etiology that is characterized by pelvic pain and
increased urinary frequency and urgency [40-43]. The eti-
ology of IC remains unknown, thereby making treatment
challenging. IC treatments include medications such as
pentosan polysulfate, intravesical hyaluronic acid or chon-
droitin sulfate instillation, hydrodistention, and transurethral
coagulation of any ulcers. However, these treatments are
temporary and focus on pain relief, not curative outcomes.

The lack of any precise understanding of the etiology of IC
also makes it difficult to develop proper animal models. Here,
we mimicked IC injury by briefly instilling HCI into the rat
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FIG. 4. Activation of an Shh-Wnt-EGF signaling cascade by engrafted UCB-MSCs. RQ-PCR analysis of (A) Smo and Gli-1,
(B) Wnt, and (C) downstream growth factors at the indicated bladder tissues. Expression is represented as % Gapdh (as
determined using five or more independent experiments) and is shown as the mean+ SEM (P <0.05, P<0.01 in comparison
with IC bladders, one-way ANOVA with Bonferroni post-test). (D) Fluorescent immunohistochemical detection of non-
phospho B-catenin protein in the indicated bladder tissues (magnification x400). Nuclei were stained with DAPI. Notably,
dense non-phospho B-catenin protein staining was mainly detected in the basal layer of urothelium of the IC + MSC group
(arrow). Scale bar =20 pm. EGF, epidermal growth factor; RQ-PCR, real-time quantitative polymerase chain reaction.
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bladder lumen [44], and we found that this animal model
faithfully reproduced the majority of the pathophysiologies
observed in IC patients, including epithelial denudation, ab-
normal increase in inflammation, neural cell activation, and
angiogenesis (Fig. 2). Using this animal model, we demon-
strated the potency of using UCB-MSC therapy to treat IC.
However, further studies are needed to optimize MSC therapy
and provide data for use in clinical trials on IC patients.

Although the etiology and pathogenesis of IC remain
unclear, a variety of pathophysiological insults may result in
the processes that self-perpetuate epithelial cell dysfunction,
C nerve fiber activation, mast cell proliferation, and, ulti-
mately, tissue damage, scarring, fibrosis, and neuropathic
pain [34,35]. Among these, impaired epithelial integrity is
considered the major trigger for IC, and indeed several ab-
normities in the urothelium have been described using
bladder biopsies and cultured urothelial cells obtained from
IC patients. Here, we found that UCB-MSC injection ame-
liorated IC bladder by stimulating epithelial regeneration.
The injected UCB-MSCs directly differentiated into epi-
thelial cells in the urothelium (Fig. 3), thereby supporting
the regeneration of the Wnt signaling cascade (Fig. 4).
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Homeostasis in the epithelial layer of rapidly replaced or-
gans (such as the intestines) is dynamically regulated by the
continuous proliferation and differentiation of tissue-residing
stem and progenitor cells [6]. Importantly, Wnt-associated
signaling cascades determine the regenerative capacity of
endogenous tissue stem cells and the replacement of the
damaged epithelium. Likewise, the cells located in the base
of the urothelium play a role as stem and progenitor cells
proliferate and are stimulated via the Wnt pathways due to
injuries in the bladder epithelium [10]. However, the self-
regenerating capability might not be enough to fully repair
tissue injuries associated with IC; thus, boosting endogenous
regenerative potency is a promising therapeutic strategy for IC
patients. It has been reported that the beneficial outcomes of
MSC therapy could be attributed to paracrine effects via se-
creted growth factors [19,26,45] and activated endogenous
primitive stem cells [27]. In our present IC animal study, the
majority of the injected UCB-MSCs were engrafted to stromal
tissues near the bladder urothelium (Fig. 3), which boosted
Whnt-mediated urothelial regeneration in a paracrine manner
(Fig. 4); moreover, its significance was proved using chemical
inhibitors (Figs. 5 and 6). To investigate whether the paracrine
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FIG. 6. Effects of Wnt-EGF signaling activity on the gene expression of the Shh-Wnt-EGF cascade components. RQ-PCR
analysis of the (A) Shh, (B) Wnt, (C) EGF, and IGF I genes, which were activated by the IC bladders that were injected with
UCB-MSC:s (see Fig. 4). Expression levels in the indicated bladder tissues are represented as % Gapdh (as determined using
five or more independent experiments) and are shown as the mean+*SEM (P <0.05, P<0.01 compared with IC group
bladders, one-way ANOVA with Bonferroni post-test).
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FIG. 7. Explanation of how UCB-MSC therapy is curative for IC bladder. The loss of urothelial integrity caused by multiple
bladder insults (dotted arrow) leads to pathophysiological characteristic of IC patients, including epithelial denudation and the
abnormal increase in inflammation, neural cells, and angiogenesis. Injecting UCB-MSCs in a paracrine manner stimulates Wnt and
its downstream growth factors, including Egf, Igf1, Igf2, and Fgf16, which can boost the regenerative capability of endogenous
stem cells (solid arrow). In addition, the engrafted UCB-MSC:s directly differentiate into epithelial cells in the bladder tissues.
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effect of MSCs could regulate the proliferation of bladder
epithelial cells, we treated the primary bladder epithelial cells
isolated from both human and rat bladders with the CM col-
lected from UCB-MSCs. Compared with normal fibroblast,
UCB-MSC-derived CM increased the proliferation of both
human and rat bladder epithelial cells, which was interfered
by the treatment of IWP, a small molecule for inhibition of
Wnt production. However, the paracrine effect of UCB-MSC
was not statistically significant (Supplementary Fig. S7),
suggesting that the proliferation of the differentiated epithelial
cells could be less affected by the injected UCB-MSCs.
Of particular interest, dense non-phospho B-catenin protein
staining was frequently observed in the basal layer of the
bladder urothelium in the IC+MSC group (Fig. 4D), sug-
gesting that the Wnt signaling cascade mainly activates the
tissue-residing stem cells rather than the differentiated cells. In
addition, the injected UCB-MSCs induced the emergence of
the host’s primitive Oct4 expressing stem cells in the basal
layer of the urothelium (Supplementary Fig. S8). Further
studies are needed to elucidate the detail mechanisms of UCB-
MSC:s for the repair of IC bladder injury.

Our present study findings suggest that applying stem cells
to the IC bladder is a promising strategy for advancing our
understanding of the pathophysiology of IC bladder. How-
ever, several challenges remain to be clarified before suc-
cessful clinical application. In particular, a major concern is
that the rat model we used here does not reflect IC bladder in
human patients. In this regard, our IC rat model demonstrated
an acute inflammatory response. Thus, a traditional animal
model for IC bladder needs to be developed, and similar MSC
therapeutic approaches should be further examined.

In conclusion, here, we provide evidence that UCB-MSC
therapy can successfully alleviate IC in a preclinical animal
model. In addition, we demonstrate the molecular mecha-
nism through which the Wnt pathways stimulate the re-
generation of a damaged bladder epithelium (Fig. 7). Hence,
the denuded epithelium of IC bladder could potentially be
cured using stem cell treatments.
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